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1. Introduction   

Holotomography is a technique that combines holography with tomography to create 

cross-sectional images of an object [1]. It involves capturing multiple holograms from 

different angles and using computer algorithms to reconstruct a three-dimensional image 

of the object [2]. This allows for detailed analysis of the object's internal structure and can 
be used to visualize objects that are transparent or otherwise difficult to image using other 

methods [3]. In biology, holographic tomography has been used to study the internal 

structure of cells and other biological samples, such as visualizing the three-dimensional 
structure of cells and their organelles and tracking the movement of molecules within 

cells. Overall, holographic tomography is a valuable tool for studying the internal 

structure of objects and has a variety of applications in biology and other fields. 

Amoebas are a type of single-celled organism that are found in a variety of aquatic 

environments, including freshwater, marine, and soil. While most amoebas do not pose a 

significant threat to humans, some types of amoebas can cause serious infections if they 
enter the human body through the nose, mouth, or other openings. For example, the 

amoeba Naegleria fowleri, which is commonly found in warm freshwater environments, 

can cause a rare and often fatal brain infection called primary amebic meningoencephalitis 

(PAM) if it is inhaled through the nose. In addition to the dangers posed to humans, some 
types of amoebas can also be harmful to other aquatic organisms and can affect the overall 

quality of the water. It is important to be aware of the potential risks associated with 

amoebas and to take appropriate precautions to avoid exposure. Amoebas are a type of 
eukaryotic organism that are traditionally classified under the Kingdom Protista. They are 
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characterized by their ability to change shape, a trait that is facilitated by their flexible cell 
walls. Some amoebas, such as Naegleria fowleri, are capable of entering the human body 

through the nose and feeding on neurons, leading to destruction of brain tissue. This type 

of amoeba is often referred to as the brain-eating amoeba, and it has a very high fatality 
rate of 97%. It is important to be aware of the potential risks posed by this type of amoeba 

[4,5]. 

Holotomography is a technique that combines holography with tomography (a method for 
creating cross-sectional images of an object) to create detailed, three-dimensional images 

of objects [6, 7]. It involves capturing multiple holograms of an object from different 

angles and using computer algorithms to reconstruct a three-dimensional image of the 
object's internal structure and properties [8]. Holographic tomography has a wide range 

of applications, including the study of biological samples such as cells and 

microorganisms [9, 10], as well as non-biological objects such as materials and 

engineering structures [11]. One of the key advantages of holographic tomography is that 
it is non-invasive and does not require the use of stains or chemical agents, making it a 

safe and reliable method for studying objects in their natural state [5]. In this paper, we 

will describe our use of holographic tomography to extract and segment amoebas from 

liquids. 

The study of amoebas, single-celled organisms that are found in a variety of aquatic 

environments, is of great interest due to their diverse roles in ecosystems and their 
potential impacts on human health [1]. To accurately and precisely study the behavior and 

characteristics of amoebas, it is important to be able to extract and segment them from 

liquids, such as water samples. In this study, we used holographic tomography, a 
technique that involves capturing multiple holograms of an object from different angles 

and using computer algorithms to reconstruct a three-dimensional image [12], to extract 

and segment amoebas from liquids. By analyzing the three-dimensional images of the 

amoebas, we were able to study their size, shape, and movement in detail [9]. Holographic 
tomography is a non-invasive technique that does not require the use of stains or chemical 

agents, making it a safe and reliable method for studying amoebas in their natural habitat 

[12]. In this paper, we will describe our use of holographic tomography to extract and 

segment amoebas from liquids and discuss the benefits of this approach. 

Overall, the use of holotomography technique to extract and segment amoebas from 

liquids allows for detailed, three-dimensional analysis of these organisms and can provide 
valuable insights into their behavior and characteristics. By visualizing and tracking the 

movement of amoebas in real-time, it is possible to study their interactions with their 

environment and understand how they may be affected by different factors. Additionally, 
the non-invasive nature of holographic tomography makes it a safe and reliable method 

for studying amoebas in their natural habitat. In the following sections, we will present 

our results and discuss the implications of our findings for the study of amoebas and their 

role in ecosystems and human health. 

2. MATERIALS AND METHODS 
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2.1 Experimental setup 

 

Figure 1: Holotomography Setup for the detection Amoebas from Liquids samples. 

In our experimental setup, we harnessed the technique of holotomography to examine 
water samples containing amoebas. We initiated the process with a sophisticated doubled 

YAG laser, operating at a precise wavelength of 532 nm, characterized by an ultra-short 

pulse width of 10 nanoseconds and an impressive pulse energy of 100 millijoules. This 

powerful laser system played a pivotal role in capturing holograms of our water samples, 
with a unique twist. Rather than employing a traditional single-angle holography 

approach, we took a multi-angle approach. We recorded holograms at six specific angles: 

0°, 30°, 60°, 90°, 120°, and 150°. This multi-angle strategy was instrumental in enhancing 
our holographic recordings by providing a comprehensive view of the amoebas within the 

water samples. It significantly boosted both the resolution and contrast of our holographic 

imagery. The key advantage of employing a pulsed laser in our setup lay in its ability to 
eliminate motion blur. As we recorded the dynamic water droplets containing amoebas, 

the pulsed laser's ultra-short duration ensured that even rapidly moving objects were 

imaged with precision, guaranteeing accuracy in the representation of amoebas. 

Subsequent to hologram acquisition, we took a post-processing approach. We 
meticulously extracted the phase component for each recorded slice based on our previous 

work [13-21]. The purpose of this phase extraction was to isolate the characteristic 

features of the amoebas. To achieve this, we turned to active contour theory. This 
advanced image segmentation technique proved highly effective in distinguishing the 

amoebas from the background, substantially enhancing the interpretability of the 

holographic data. Now, the heart of our approach lay in the application of 

holotomography. This technique allowed us to reconstruct detailed three-dimensional 
structural information and study the dynamic behaviors of the amoebas with an 

exceptional degree of precision. Holotomography, with its capacity for volumetric 

reconstruction, provided invaluable insights into the amoebas' morphology and their 
interactions within their aquatic environment. Lenses in our setup were instrumental in 

precisely directing and focusing the laser beam, ensuring optimal beam quality. 
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Furthermore, a beam splitter and six CCD cameras, each equipped with its own lens, 
facilitated simultaneous hologram recording from multiple angles, enabling 

comprehensive imaging of amoebas within water samples. In summary, our experimental 

setup, which seamlessly integrated holotomography with a high-powered pulsed laser, 
multi-angle holographic recording, and advanced image segmentation techniques, enabled 

us to effectively extract and segment amoebas from water samples. This comprehensive 

approach offered a profound understanding of amoeba behavior, their intricate three-
dimensional structure, and their interactions within their aquatic habitat, thus advancing 

our scientific analysis in the field. 

2.2 Detection Phase 

 

Fig. 2:Recorded Inline Holograms of Water Samples Containing Amoebas. 

Figure 2 showcases inline holograms of water samples containing amoebas recorded at 

various angles (0 degrees, 30 degrees, 60 degrees, 90 degrees, 120 degrees, and 150 
degrees) using our experimental setup. These holograms were instrumental in our 

endeavor to detect the presence of amoebas through the phase component. 

To elaborate on the scientific aspect, the detection of amoebas relied on the variation in 
the phase component caused by the refractive index differences between the amoebas and 

their surrounding water medium. The extraction of the phase component for each recorded 

slice provided valuable data regarding these refractive index disparities, ultimately 
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enabling the identification and localization of amoebas within the holograms. This phase-
based detection approach not only offers high sensitivity but also allows for label-free and 

non-destructive analysis, making it a powerful tool in the realm of biological imaging and 

analysis.  

The integration of holotomography with phase extraction techniques in our study 

represents a cutting-edge approach to the detection of amoebas in water samples. 

Holotomography provided us with the capability to acquire detailed three-dimensional 
information about the specimens. This technique was instrumental in capturing inline 

holograms from multiple angles, giving us a comprehensive view of the amoebas within 

the samples. Concurrently, phase extraction served as the key to unveil the amoebas within 

the holographic data. 

Through phase extraction [15], we deciphered the specific phase changes induced by the 

presence of amoebas in the laser light. These phase variations were intricately linked to 
refractive index differences between the amoebas and the surrounding water medium. By 

combining holotomography and phase extraction, we could localize amoebas with a high 

degree of precision, leveraging the remarkable sensitivity of phase-based detection. The 
resulting combination allowed us to not only observe the three-dimensional structure of 

the amoebas but also accurately pinpoint their positions within the samples. This synergy 

between holotomography and phase extraction represents a significant advancement in 

biological imaging, providing a holistic approach for the detection, localization, and 

detailed study of amoebas in their natural aquatic habitat. 

 

 

Fig. 3: Holographic Detection of Amoebas: Phase Analysis at Diverse Angles. 
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In Figure 3, we delve into the critical phase of detection in our holographic tomography 
setup. This phase illustrates the results of our method applied to all the recorded slices at 

different angles. The primary objective here is to showcase the effectiveness and 

reliability of our proposed approach for detecting amoebas within liquid samples using 
our system. To understand this process scientifically, consider the object of interest as a 

small 3D structure situated at a distance "d" from the CCD camera. In our holographic 

tomography setup, we employ the Fresnel approximation formula, a well-established 
mathematical approach in optics. The core of this method involves utilizing an inverse 

Fourier-transform formula, as expressed in Equation (1). This mathematical procedure 

allows us to computationally reconstruct the holograms recorded at different angles, 

thereby generating a comprehensive view of the object's three-dimensional characteristics. 
In this case, it enables us to visualize and analyze the presence and location of amoebas 

within the liquid samples with a high degree of accuracy, highlighting the robustness of 

our detection method. 
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Where ℑ𝑥,𝑦[ℎ𝐸𝑅

∗𝑤] Is the Fourier transform operator. The intensity is calculated by 

squaring the optical field, i.e., 𝐼(𝜉, 𝜂) = |Г(𝜉, 𝜂)|2, and the phase is calculated using 

𝜙(𝑥, 𝑦) = arctan (𝐼𝑚[Г(𝜉, 𝜂)]𝑅𝑒[Г(𝜉, 𝜂)]. If x, y are discretized on a rectangular raster 

of 𝑁𝑥 ,× 𝑁𝑦 points (corresponding to the number of pixels in the CCD camera in the x and 

y dimensions, respectively) with step sizes ∆x, ∆y, which are the pixel-to-pixel distances 

on the CCD in the x and y directions, respectively. 
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Fig. 4: phase component peaks at the amoeba position according to the proposed method. 

Figure 4 provides a visual representation of the distribution of phase component peaks at 

amoeba positions according to the proposed method. These peaks, crucial for identifying 
amoeba presence, are recognized using our method and clearly highlighted in the figure 

using the red color. This distribution map facilitates a comprehensive comparison of phase 

values across various angles, underscoring the efficacy of our proposed technique for 
reliable amoeba detection and segmentation in liquid samples. In a manner similar to its 

application in our study [15,19], Figure 4 underscores the importance of parameter "L" as 

a reliable indicator for amoeba detection within the liquid medium. It's worth noting that 
in the case of amoebas, the average L value in our healthy water sample images stands at 

130, while in water samples contain amoebas, it significantly rises to 427. Moreover, the 

in-phase component peaks consistently fall within the [400, 450] range for amoebas, 

highlighting their presence. Conversely, in images of healthy water samples with uniform 
pixel intensity distribution, the in-phase component peaks remain confined to the [110, 

150] range. 
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Fig. 5: 3D Reconstruction and Multiplication of Projections from Different Angles for our 

Sample. 

Figure 5a presents the 3D reconstruction of amoebas in liquids using our proposed setup. 
The figure includes multiple views of the reconstructed 3D image, including top, bottom, 

front, and side views. This figure provides a detailed and comprehensive view of the 3D 

structure of the amoebas and allows for the visualization of their internal features. this 
figure helps to illustrate the capabilities of our proposed setup for 3D reconstruction of 

sample of water. this figure helps to illustrate the capabilities and potential of our proposed 

setup for 3D reconstruction. The figure 5b provides a detailed and comprehensive view of 

the multiple projections of the volume from different angles and allows for the 
visualization of the internal features and relationships within the volume. 

After the initial contour has been optimized using the proposed active contour model, the 

3D shape of the object can be reconstructed by numerically reconstructing the function 

ℎ(𝑥, 𝑦) and computing the intensities 𝐼 on multiple planes at various angles and at distance 

𝑑 surrounding the test volume. This process involves using the discretized form of the 

Fresnel diffraction formula and performing some coordinate transformations. The 

resulting reconstructed intensities are then multiplied along each angular projection to 
obtain a 3D reconstruction of the object Equation (2). 

𝐼 =  ∏ 𝐼𝑗

𝑀

1

 (2) 

3. RESULTS AND DISCUSSION 

3.1 Detection Evaluation 
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Table 1:Proposed method percentage in returning the parameter c inside the amoebe and the average 

time compared the state of art. 

Methods 
Accuracy (%) 

Time average 
(seconds) 

Inside 
Amoeba 

Edge Amoeba 
Outside 
Amoeba 

Edge detection 
method [20] 

80% 19% 1% 9.1007 

Template 
matching 

method [24] 
90,5% 5,5% 4% 7.4689 

Clustering 
method [21,22] 

96% 2% 2% 13.1247 

Potential field 
method [23] 

95% 0 5% 38.1643 

Proposed 
method 

98% 2% 0% 1.4322 

 
To evaluate the performance of our proposed method for detecting and segmenting 

amoebas in liquids using holotomography, we measured the accuracy of the method in 

terms of its ability to correctly identify the position of the amoeba based on the value of 
the c parameter returned by our setup (Table 1). To compare the performance of our 

method with other state-of-the-art methods, we also calculated the percentage of accuracy 

for the Potential Field Segmentation (PFS), Edge Detection, Template Matching, and 
Clustering methods in detecting the centers of the amoebas. The results of these 

comparisons provide insight into the relative effectiveness of these different approaches 

for detecting and segmenting amoebas in liquids. Potential Field Segmentation (PFS) is a 

method used in image processing and computer vision to segment an image into different 
regions or objects [23]. It works by creating a potential field for each pixel in the image, 

with the strength of the field determined by the pixel's intensity or color. Pixels with 

similar intensities are attracted to each other, causing them to cluster together and form a 
segment. Edge detection is a method used to identify the boundaries of objects in an 

image. It works by detecting sudden changes in pixel intensity or color, which typically 

occur at the edges of objects. There are many different edge detection algorithms, each 

with its own strengths and weaknesses [20]. Template matching is a method used to find 
a template or pattern in an image [24]. It works by sliding the template over the image and 

comparing the template to each subregion of the image. If the template and subregion 

match, the method records the location of the match. Template matching can be used for 
object recognition, image registration, and many other applications. Clustering is a 

method used to group data points into clusters based on their similarity. It is often used in 

image processing and computer vision to segment an image into different regions or 
objects. In image segmentation, the principle of clustering algorithms involves 

partitioning an image into meaningful regions or objects based on similarities in pixel 

values, colors, textures, or other visual features. Clustering algorithms such as K-Means, 

DBSCAN, or hierarchical clustering can be applied to group pixels with similar 
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characteristics into distinct clusters, effectively segmenting the image into semantically 
meaningful regions. This process aids in tasks like object detection, image recognition, 

and computer vision by isolating and identifying objects or regions of interest within the 

image [21,22]. 

3.2 Segmentation Evaluation 

Table 2:Sensitivity, Dice, Hausdorff distance, Specificity, and elapsed time rates obtained from the optimal 
contour of the images of our sample reached by using the Geodesic Active Contour (GAC), the Localized 
Active Contour (LAC), the Active Contour driven by Cuckoo Search (ACCS), and the proposed method 

(Proposed). 

Patients Method Sen 

D 

(AVG±SDx

10-4) 

Hd Spe Times (s) 

Captured 

image 

at 0° 

GAC 

LAC 

ACCS 

Proposed 

0.7083 ±1.1 

0.8905 ±2.5 

0.9391 ±7.4 

0.9798 ±0.6 

0.7539 ±6.2 

0.9371 ±3.2 

0.9384 ±9.0 

0.9876 ±0.1 

3.2311 ±2.5 

2.6478 ±2.6 

2.7448 ±5.2 

2.7902±0.1 

0.9645±0.6 

0.9772±2.1 

0.9240±1.2 

0.9969±1.5 

12.8450 ±1.2 

11.2406 ±1.9 

18.1200 ±2.0 

  1.4321 ±0.1 

Captured 

image 

at 30° 

GAC 

LAC 

ACCS 

Proposed 

0.6854 ±0.0 

0.8152 ±5.4 
0.9243 ±1.5 

0.9849 ±0.3 

0.7978 ±4.3 

0.9241 ±2.2 
0.9685 ±0.8 

0.9792 ±0.6 

4.3569 ±6.1 

4.5010 ±2.0 
3.6050 ±2.5 

2.1597 ±0.2 

0.9913 ±4.5 

0.9907 ±2.8 
0.9969 ±1.1 

0.9987 ±0.1 

12.8352 ±1.0 

11.2316 ±1.1 
18.1340 ±2.6 

  1.4401 ±0.3 

Captured 

image 

at 60° 

GAC 

LAC 

ACCS 

Proposed 

0.6804 ±5.3 

0.6915 ±1.3 

0.9574 ±2.8 

0.9978 ±0.1 

0.8689 ±5.2 

0.7917 ±4.2 

0.9620 ±4.1 

0.9898 ±0.0 

6.5823 ±2.5 

5.7490 ±3.5 

3.8760 ±5.1 

2.0194 ±1.1 

0.9702 ±0.3 

0.8914 ±0.1 

0.9892 ±0.7 

0.9987 ±0.0 

12.7052 ±1.4 

10.1016 ±2.1 

18.1340 ±3.1 

  1.4301 ±0.5 

Captured 

image 

at 90° 

GAC 

LAC 

ACCS 

Proposed 

0.5435 ±3.6 

0.6951 ±2.2 

0.8785 ±3.5 

0.9876 ±0.1 

0.6842 ±0.2 

0.7845 ±1.3 

0.9456 ±1.4 

0.9934 ±0.5 

4.5432 ±7.7 

4.0214 ±3.7 

3.0145 ±2.3 

2.0124 ±1.1 

0.9976 ±1.7 

0.9850 ±4.6 

0.9679 ±7.4 

0.9899 ±0.2 

12.9528 ±8.7 

 9.8972 ±8.0 

17.8972 ±5.4 

  1.4401 ±1.0 

Captured 

image 

at 120° 

GAC 

LAC 

ACCS 

Proposed 

0.8267 ±3.4 

0.8678 ±2.0 
0.9242 ±2.1 

0.9896 ±0.1 

0.7382 ±2.8 

0.8243 ±0.0 
0.9780 ±0.2 

0.9964 ±0.2 

4.8558 ±3.9 

6.5701 ±1.2 
3.6437 ±1.1 

2.3559 ±1.1 

0.9804 ±3.5 

0.9906 ±0.5 
0.9881 ±4.6 

0.9967 ±0.3 

12.5467 ±8.6 

10.1245 ±2.8 
18.7682 ±1.8 

1.4330 ±0.6 
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Captured 

image 

at 150° 

GAC 

LAC 

ACCS 

Proposed 

0.7952 ±5.4 

0.8645 ±0.3 

0.9145 ±2.0 

0.9956 ±0.8 

0.8256 ±2.7 

0.7981 ±0.7 

0.9680 ±3.3 

0.9962 ±2.2 

3.2310 ±2.0 

3.2453 ±0.0 

2.8947 ±6.7 

2.0420 ±0.1 

0.9920 ±2.2 

0.9965 ±7.9 

0.9988 ±2.3 

0.9998 ±1.7 

12.3899 ±7.4 

10.5313 ±0.9 

17.3692 ±5.0 

1.4310 ±4.6 

 

Image segmentation techniques such as the Geodesic Active Contour (GAC) [25], 
Localized Active Contour (LAC) [26], and Active Contour driven by Cuckoo Search 

(ACCS) [28] have been widely used for their ability to extract objects of interest from 

images. GAC is a fast method that can handle topological changes well but may struggle 
with noisy or concave objects. On the other hand, LAC is more sensitive to local features 

and less sensitive to global features than GAC but may be more prone to getting stuck in 

local minima [27]. ACCS combines the principles of active contours with the Cuckoo 

Search optimization algorithm, allowing it to more effectively escape local minima and 
find the global minimum energy solution. However, ACCS may be slower due to the 

added computational cost of the Cuckoo Search algorithm. Each of these methods has its 

own strengths and limitations, and the appropriate method to use may depend on the 

specific needs of the application. 

In comparison (Table2) to the Geodesic Active Contour (GAC) method, our method 

showed improved sensitivity and specificity, as well as a lower average time for image 
processing. The Dice coefficient was similar between the two methods, but our method 

had a slightly smaller Hausdorff distance. The Localized Active Contour (LAC) method 

had similar sensitivity and specificity to our method, but a lower Dice coefficient and a 
larger Hausdorff distance. The Active Contour driven by Cuckoo Search (ACCS) method 

had the highest sensitivity and Dice coefficient, but the longest average processing time 

and the largest Hausdorff distance. Overall, our method strikes a good balance between 

accuracy and efficiency, making it a strong contender in image segmentation tasks. 

The evolution of the initial contour detected by our system is performed using the 

proposed active contour model, which is programmed using finite differences after the 

energy function has been discretized and linearized. This allows us to track the evolution 
of the contour as it moves towards the optimal solution for the given energy function 

Eq(3). The finite difference approach enables us to approximate the derivatives of the 

energy function in a computationally efficient manner, and the linearization allows us to 
solve for the update to the contour at each iteration using a set of linear equations. By 

iteratively updating the contour according to the optimized solution, we are able to 

accurately extract the object of interest from the image. 

𝐸𝑖,𝑗 = 𝛼𝐶𝑖,𝑗 + 𝛽|𝐼 − 𝑚𝑖,𝑗|2 + 𝛾|𝐼 − 𝑀𝑖,𝑗|2 (3) 

Were:  
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α = β = γ = 1 are fixed parameters. Ci,j is the initial contour detected by the proposed 
method. mi,j is the average of the input RM image I(x,y) inside the initial contour Ci,j. Mi,j 

is the average of the input RM image I(x,y) outside the initial contour Ci,j 

And  

0 ≤ 𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
≤ 1 

0 ≤ 𝐷 =
𝑇𝑃

𝑇𝑃 +
𝐹𝑃 + 𝐹𝑁

2

≤ 1 

0 ≤ 𝑆𝑒𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
≤ 1 

𝐻𝑑(𝐺, 𝑆) = max {max
𝑎∈𝐺

min
𝑏∈𝑆

‖𝑎 − 𝑏‖ , max
𝑏∈𝑆

min
𝑎∈𝐺

‖𝑏 − 𝑎‖} 

4. CONCLUSION 

In summary, our use of holographic tomography to extract and segment amoebas from 
water samples has allowed us to visualize the three-dimensional structure and movement 

of these organisms in detail, study their behavior and interactions with their environment. 

The use of multiple CCD cameras to record holograms at different angles has improved 

the resolution and contrast of the images, resulting in clearer and more detailed 
visualization of the amoebas.  The extraction of the maximum value from the in-phase 

component of the scanned data allows for the reliable and precise localization of amoeba 

positions. Concurrently, the application of active contour theory enables the meticulous 
delineation and segmentation of amoebas from their surrounding environment. This 

synergistic approach ensures a scientifically rigorous methodology for amoeba detection 

and analysis. Simultaneously, 3D reconstruction of amoebas provides critical insights into 
their structure and behavior, enhancing our understanding of their ecological roles and 

potential impacts on human health. Overall, our results demonstrate the effectiveness of 

holographic tomography as a powerful tool for studying the internal structure and 

properties of biological samples and have important implications for understanding the 
behavior and interactions of amoebas in aquatic environments. This knowledge is 

instrumental in assessing water quality and safety for human consumption, contributing 

to essential public health considerations. 
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